Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery.

نویسندگان

  • P A Netti
  • L T Baxter
  • Y Boucher
  • R Skalak
  • R K Jain
چکیده

Elevated interstitial fluid pressure (IFP) may constitute a significant physiological barrier to drug delivery in solid tumors. Strategies for overcoming this barrier have not been developed to date. To identify and characterize various mechanisms regulating IFP and to develop strategies for overcoming the IFP barrier, we modeled the tumor as a poroelastic solid. We used this model to simulate the effect of changes in microvascular pressure and tumor blood flow (TBF) on IFP. To test model predictions, the effects of changes in arterial pressure and TBF on IFP were measured using a tissue-isolated tumor preparation. IFP in the center of an isolated tumor was predicted to follow variation of the arterial pressure with a time delay of the order of magnitude of 10 s, and this delay was found to be 11 +/- 6 s experimentally. Following a cessation of TBF, the time constant of the drop in IFP was predicted to be of the order of 1000 s and was found to be 1500 +/- 900 s experimentally. The former time scale is characteristic of transcapillary fluid exchange, and the latter of percolation of fluid through the interstitial matrix. Relying on the good agreement between theoretical predictions and experimental data, we estimated the effect of blood pressure modulation on macromolecular uptake in solid tumors. Our results show that no appreciable increase of macromolecular uptake should occur either by an acute or by a chronic increase of blood pressure. On the other hand, higher uptake would result from periodic modulation of blood pressure. Therefore, the effectiveness of a vasoconstrictor such as angiotensin II to increase macromolecular delivery should be significantly enhanced by periodic rather than bolus or continuous administration of the vasoactive agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of tumor shape and size on drug delivery to solid tumors

: Tumor shape and size effect on drug delivery to solid tumors are studied, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for predefined tumor geometries. The governing equat...

متن کامل

Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors

BACKGROUND The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, drug extravasation from microvessels or to lymphatic vessels. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advan...

متن کامل

Application of Supercritical Fluid ‎Technology for Preparation of Drug Loaded ‎Solid Lipid Nanoparticles

   Small changes in pressure or temperature, close to the critical point, lead to large changes in solubility of supercritical carbon dioxide (CO2). Environmentally friendly supercritical CO2 is the most popular and inexpensive solvent which has been used for preparation of nanodrugs and nanocarriers in drug delivery system with supercritical fluid technology. Delivery...

متن کامل

Lowering of the Interstitial Fluid Pressure as a Result of Tissue Compliance Changes during High Intensity Focused Ultrasound Exposure: Insights from a Numerical Model

Interstitial fluid pressure (IFP) is elevated in tumors. This may constitute a significant physiological barrier to drug delivery to solid tumors. Owing to this elevated IFP, the interstitial fluid velocity (IFV) is negligible throughout the tumor but significant near the tumor margin. Any therapeutic strategy that can lower the IFP will likely improve drug convection within the tumor and decre...

متن کامل

Influence of hydralazine on interstitial fluid pressure in experi- mental tumors - a preliminary study

Background. Interstitial fluid pressure (IFP) has been recognised as the most important obstacle in macromolecular drug delivery to solid tumors. Our interest was to reduce differentialy tumor IFP with respect to IFP in surrounding and normal tissues in order to increase drug delivery to tumors as well to increase tumor blood flow and potentialy tumor tissue oxygenation. In this preliminary stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 55 22  شماره 

صفحات  -

تاریخ انتشار 1995